


Ariel Alonso, IPC

Continuous Delivery

About Me

• Ariel Alonso

• Systems Architect

• Independent Purchasing Cooperative, Inc.

• Software Engineer for 15 years

• Interests
• Agile & XP
• Test Driven Development
• Automation
• Testing
• Distributed Systems
• Big Data

• Ariel Alonso

• Systems Architect

• Independent Purchasing Cooperative, Inc.

• Software Engineer for 15 years

• Interests
• Agile & XP
• Test Driven Development
• Automation
• Testing
• Distributed Systems
• Big Data

Agenda

 What is Continuous Delivery?

 Implementing Continuous Delivery

 Continuous Delivery at IPC

 Q&A

 What is Continuous Delivery?

 Implementing Continuous Delivery

 Continuous Delivery at IPC

 Q&A


What is Continuous Delivery?

How long would it take your organization to deploy a
change [to production] that involves just one single
line of code?

Do you do this on a repeatable, reliable basis?

- Mary and Tom Poppendieck, Implementing Lean Software Development

How long would it take your organization to deploy a
change [to production] that involves just one single
line of code?

Do you do this on a repeatable, reliable basis?

- Mary and Tom Poppendieck, Implementing Lean Software Development

What Scrum Does For Us

 Smaller pieces of
functionality

 More frequent feedback

 Shippable increments
quicker

 Smaller pieces of
functionality

 More frequent feedback

 Shippable increments
quicker

What About Deployments?

 Value is only realized in
production

 Manual deployments are
painful and error prone

 Poor configuration
management leads to
unpredictable results

 Infrequent deployments
increase risk

 Value is only realized in
production

 Manual deployments are
painful and error prone

 Poor configuration
management leads to
unpredictable results

 Infrequent deployments
increase risk

“If it hurts, do it more often.”
- Internet Wisdom
“If it hurts, do it more often.”
- Internet Wisdom

Frequent Deployments

 Deploying Frequently
 Feedback from users
 Reduce risk of deployment
 Real project progress
 Business value quicker

 More frequent changes with fewer lines of code
reduce risk and help identify problems easier and
sooner

 Deploying Frequently
 Feedback from users
 Reduce risk of deployment
 Real project progress
 Business value quicker

 More frequent changes with fewer lines of code
reduce risk and help identify problems easier and
sooner

Reduce Risk of Change

John Allspaw, Ops Meta-Metrics

What is Continuous Delivery?

 Set of software development practices and
principles focused on building, testing, and
deploying software faster and more frequently

 Goals
 Improve Quality
 Reduce Cycle Time

 Business value realized in production

 Set of software development practices and
principles focused on building, testing, and
deploying software faster and more frequently

 Goals
 Improve Quality
 Reduce Cycle Time

 Business value realized in production

The Last Mile

Agile/Scrum
Gives us feedback on the quality of our
requirements and the quality of our
code

Continuous Delivery
Gives us feedback on the quality of our
process to deliver software

Gives us feedback on the quality of our
requirements and the quality of our
code

Scrum

Continuous
Delivery

“Just ship, baby.”
- Kent Beck
“Just ship, baby.”
- Kent Beck


Implementing Continuous Delivery

Principles of Continuous Delivery

 Process MUST be repeatable and reliable

 Automate everything

 If something is difficult or painful, do it more often

 Keep everything in source control

 Done means “in production”

 Build quality in to the product

 Everyone has responsibility for the release process

 Improve continuously

 Process MUST be repeatable and reliable

 Automate everything

 If something is difficult or painful, do it more often

 Keep everything in source control

 Done means “in production”

 Build quality in to the product

 Everyone has responsibility for the release process

 Improve continuously

“Real artists ship.”
- Steve Jobs
“Real artists ship.”
- Steve Jobs

Continuous Delivery Pattern

Developer
Machines

Source Control
& Build Servers

Integration
Environment

Demo / UAT
Environment

Staging
Environment

Production
Environment

Single artifact is produced and
advanced through the environments

Exactly the same mechanism is used
to deploy to each environment

Continuous Delivery Practices

 Build binaries only once

 Use precisely the same mechanism to deploy to
every environment

 Smoke test your deployment

 If anything fails, stop the line!

 Build binaries only once

 Use precisely the same mechanism to deploy to
every environment

 Smoke test your deployment

 If anything fails, stop the line!

Key Components

 Source Control

 Test Driven Development

 Behavior Driven Development

 Automated Testing

 Continuous Integration

 Infrastructure as Code

 Source Control

 Test Driven Development

 Behavior Driven Development

 Automated Testing

 Continuous Integration

 Infrastructure as Code

Source Control

 Essential for development teams to work effectively
on the same code base

 Ability to attach historical data to code, such as
explanatory comments about the intent behind
each change

 Control the “production line” with commit hooks

 Essential for development teams to work effectively
on the same code base

 Ability to attach historical data to code, such as
explanatory comments about the intent behind
each change

 Control the “production line” with commit hooks

Continuous Integration

 Automatically builds entire application

 Automated unit and functional tests

 Exposes integration issues and conflicts early

 Everyone is responsible for the CI environment

 Automatically builds entire application

 Automated unit and functional tests

 Exposes integration issues and conflicts early

 Everyone is responsible for the CI environment

Test Driven Development

 Red, Green, Refactor

 Permanent Regression

 Self Documentation

 More Maintainable Code

 Red, Green, Refactor

 Permanent Regression

 Self Documentation

 More Maintainable Code

Behavior Driven Development

 Starts with a conversation

 Shared understanding of the
features to be implemented

 Features are identified as
user stories

Feature: Refund
In order to make the customer whole
As the product owner
I want to make sure we know how to do math

Scenario: Customer refund
Given Fred has bought a microwave
And the microwave cost 100 USD

When we refund the microwave
Then Fred should be refunded 100 USD

 Starts with a conversation

 Shared understanding of the
features to be implemented

 Features are identified as
user stories

Feature: Refund
In order to make the customer whole
As the product owner
I want to make sure we know how to do math

Scenario: Customer refund
Given Fred has bought a microwave
And the microwave cost 100 USD

When we refund the microwave
Then Fred should be refunded 100 USD

Automated Testing

 Unit Testing

 Functional Testing

 Performance Testing

 Stress Testing

 Security Testing

 Disaster Recovery Testing

 Unit Testing

 Functional Testing

 Performance Testing

 Stress Testing

 Security Testing

 Disaster Recovery Testing

Infrastructure as Code

 Automate the process of bringing the system to a
working state

 Production like environments can be built from
scratch in minutes

 Versioning environments along with applications

 Allows for continuous testing of our infrastructure

 Automate the process of bringing the system to a
working state

 Production like environments can be built from
scratch in minutes

 Versioning environments along with applications

 Allows for continuous testing of our infrastructure

Tools

 Issue Tracking
 JIRA, PivotalTracker,

Bugzilla

 Source Control
 Mercurial, Git, Subversion,

CVS, TFS

 Virtualization
 VMWare, OpenStack,

Amazon EC2

 CI/Build Server
 Bamboo, Hudson, Jenkins,

TeamCity

 Automated Testing
 jUnit, Nunit, RSpec,

Cucumber, Selenium

 Infrastructure as Code
 Puppet, Chef

 Issue Tracking
 JIRA, PivotalTracker,

Bugzilla

 Source Control
 Mercurial, Git, Subversion,

CVS, TFS

 Virtualization
 VMWare, OpenStack,

Amazon EC2

 CI/Build Server
 Bamboo, Hudson, Jenkins,

TeamCity

 Automated Testing
 jUnit, Nunit, RSpec,

Cucumber, Selenium

 Infrastructure as Code
 Puppet, Chef


Continuous Delivery at IPC

The Challenge

 Payment Processing Platform

 28,000+ restaurants in US and
Canada

 2M transactions/day

 $5.8B/year in credit card sales

 200M SUBWAY® Card accounts

 99.999% Service Level
Agreement

 Release Weekly

 Payment Processing Platform

 28,000+ restaurants in US and
Canada

 2M transactions/day

 $5.8B/year in credit card sales

 200M SUBWAY® Card accounts

 99.999% Service Level
Agreement

 Release Weekly

The Solution

 Transition from waterfall to Scrum

 Weekly sprints resulting in weekly production
deployments

 Embrace DevOps and Continuous Delivery

 Invest in comprehensive testing approach

 Transition from waterfall to Scrum

 Weekly sprints resulting in weekly production
deployments

 Embrace DevOps and Continuous Delivery

 Invest in comprehensive testing approach

How Much Do We Test?

 3,600+ Unit Tests

 4,500+ Functional Tests

 7,000+ Regression Tests

 Disaster Recovery Tests

 3,600+ Unit Tests

 4,500+ Functional Tests

 7,000+ Regression Tests

 Disaster Recovery Tests

“Why do we never have time to do
it right, but always have time to do
it over? ”
- Anonymous

“Why do we never have time to do
it right, but always have time to do
it over? ”
- Anonymous

Keys to Success

 Organizational commitment to Agile

 Focused delivery team

 Embrace inevitability of change

 Treat agility as a corporate asset

 Favor cultural fit over technical skills when growing
the team

 Continually improve

 Organizational commitment to Agile

 Focused delivery team

 Embrace inevitability of change

 Treat agility as a corporate asset

 Favor cultural fit over technical skills when growing
the team

 Continually improve

The Final Frontier

Release Manager Continuous
Integration

Continuous
Delivery

Continuous
Deployment

Continuous
Integration

Continuous
Delivery

Continuous
Deployment

Manual builds
produced by release
managers

Automated builds
combined with
automated unit and
functional testing

Repeatable and
reliable deployments
allowing for small,
frequent releases

Near real-time
deployment of
production ready
code

“The future is here. It’s just not
evenly distributed yet.”
- William Gibson

“The future is here. It’s just not
evenly distributed yet.”
- William Gibson


Q&A

